Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Toxins (Basel) ; 16(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668589

RESUMO

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.


Assuntos
Clonagem Molecular , Cobras Corais , Venenos Elapídicos , Músculo Esquelético , Receptores Nicotínicos , Animais , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Venenos Elapídicos/genética , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Sequência de Aminoácidos , Masculino
2.
Integr Comp Biol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658196

RESUMO

Melatonin is a hormone known as an endogenous temporal marker signaling the dark phase of the day. Although the eyes seem to be the main site of melatonin production in amphibians, little information is available about the natural variation in the ocular melatonin levels and its modulation following immune stimulation. We investigated the daily variation of plasma and ocular melatonin levels in bullfrogs (Lithobates catesbeianus) and their modulation following an immune stimulation with lipopolysaccharide (LPS) in yellow cururu toads (Rhinella icterica). For the daily variation, bullfrogs were bled and then euthanized for eye collection every 3h over 24h to determine plasma and ocular melatonin levels. We found a positive correlation between ocular and plasma melatonin levels, with maximum values at night (22h) for both plasma and the eyes. For immune stimulation, yellow cururu toads received an intraperitoneal injection of LPS or saline solution during the day (10h) or at night (22h). Two hours after injection, toads were bled and euthanized for eye collection to obtain plasma and ocular melatonin levels. In addition, the liver and bone marrow were collected to investigate local melatonin modulation. Our results demonstrate that retina light-controlled rhythmic melatonin production is suppressed while liver and bone marrow melatonin levels increase during the inflammatory assemblage in anurans. Interestingly, the LPS injection decreased only ocular melatonin levels, reinforcing the central role of the eyes (i.e., retina) as an essential organ of melatonin production, and a similar role to the pineal gland during the inflammatory response in amphibians. Together, these results point to a possible immune-pineal-ocular axis in amphibians, yet to be fully described in this group.

3.
J Pineal Res ; 76(1): e12923, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990784

RESUMO

Immune-pineal axis activation is part of the assembly of immune responses. Proinflammatory cytokines inhibit the pineal synthesis of melatonin while inducing it in macrophages by mechanisms dependent on nuclear factor-κB (NF-κB) activation. Cytokines activating the Janus kinase/signal transducer and activator of transcription (STAT) pathways, such as interferon-gamma (IFN-γ) and interleukin-10 (IL-10), modulate melatonin synthesis in the pineal, bone marrow (BM), and spleen. The stimulatory effect of IFN-γ upon the pineal gland depends on STAT1/NF-κB interaction, but the mechanisms controlling IL-10 effects on melatonin synthesis remain unclear. Here, we evaluated the role of STAT3 and NF-κB activation by IL-10 upon the melatonin synthesis of rats' pineal gland, BM, spleen, and peritoneal cells. The results show that IL-10-induced interaction of (p)STAT3 with specific NF-κB dimmers leads to different cell effects. IL-10 increases the pineal's acetylserotonin O-methyltransferase (ASMT), N-acetylserotonin, and melatonin content via nuclear translocation of NF-κB/STAT3. In BM, the nuclear translocation of STAT3/p65-NF-κB complexes increases ASMT expression and melatonin content. Increased pSTAT3/p65-NF-κB nuclear translocation in the spleen enhances phosphorylated serotonin N-acetyltransferase ((p)SNAT) expression and melatonin content. Conversely, in peritoneal cells, IL-10 leads to NF-κB p50/p50 inhibitory dimmer nuclear translocation, decreasing (p)SNAT expression and melatonin content. In conclusion, IL-10's effects on melatonin production depend on the NF-κB subunits interacting with (p)STAT3. Thus, variations of IL-10 levels and downstream pathways during immune responses might be critical regulatory factors adjusting pineal and extra-pineal synthesis of melatonin.


Assuntos
Melatonina , Glândula Pineal , Ratos , Animais , NF-kappa B/metabolismo , Glândula Pineal/metabolismo , Melatonina/farmacologia , Interleucina-10/metabolismo , Transdução de Sinais
4.
J Physiol ; 601(3): 535-549, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36287128

RESUMO

Chronic inflammatory diseases are triggered by causal stimuli that might occur long before the appearance of the symptoms. Increasing evidence suggests that these stimuli are necessary but not always sufficient to induce the diseases. The murine model of type II collagen emulsified in Freund's incomplete adjuvant (collagen-induced arthritis) to induce rheumatoid arthritis (RA) follows this pattern as some animals do not develop the chronically inflamed phenotype. Considering that in the immune-pineal axis (IPA) theory adrenal-pineal cross-talk adjusts early phases of inflammatory processes, we investigated whether differences in IPA activation could explain why some animals are resistant (RES) while others develop RA. We observed a similar increase in 6-sulfatoxymelatonin (aMT6s) excretion from day 3 to 13 in both RES and RA animals, followed by a significant decrease in RA animals. This pattern of aMT6s excretion positively correlated with plasma corticosterone (CORT) in RES animals. Additionally, RA animals presented a lower aMT6s/CORT ratio than saline-injected or RES animals. Plasmatic levels of tumour necrosis factor were similar in both groups, but interleukin (IL)-1ß and monocyte chemotactic protein 1 (MCP-1) levels were lower in RES compared to RA animals. IL-2 and IL-4 were decreased in RES animals compared to saline-injected animals. The aMT6s/CORT ratio inversely correlated with the paw thickness and the inflammatory score (levels of IL-1ß, MCP-1, IL-2 and IL-4 combined). Thus, adrenocortical-pineal positive interaction is an early defence mechanism for avoiding inflammatory chronification. KEY POINTS: Immune-pineal axis imbalance is observed in early-phase rheumatoid arthritis development. Only resistant animals present a positive association between adrenal and pineal hormones. The 6-sulfatoxymelatonin/corticosterone ratio is decreased in animals that develop rheumatoid arthritis. The inflammatory score combining the levels of nocturnal interleukin (IL)-1ß, monocyte chemotactic protein 1, IL-2 and IL-4 presents a very strong positive correlation with the size of inflammatory lesion. The 6-sulfatoxymelatonin/corticosterone ratio presents a strong negative correlation with the inflammatory score and paw oedema size.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Camundongos , Animais , Quimiocina CCL2 , Corticosterona , Interleucina-4/efeitos adversos , Interleucina-2 , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Citocinas/metabolismo
5.
J Affect Disord ; 323: 679-688, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36481230

RESUMO

BACKGROUND: Alterations in circadian system organization have been related to major depressive disorder manifestations. This study aimed to evaluate chronobiological parameters, such as sleep, levels of 6-sulfatoxymelatonin, and others derived from actimetry as potential predictors of adequate treatment response in MDD. METHODS: 98 adult women with confirmed diagnosis of MDD were included. Participants completed standard questionnaires (Hamilton Depression Rating Scale - HAM-D; Munich Chronotype Questionnaire - MCTQ) at baseline and after 4 weeks of treatment. Urinary samples for assessing 6-sulfatoxymelatonin were collected on the day before and immediately after pharmacological treatment administration, and 28 continuous days of actigraphy data were collected during the protocol. Participants were classified into Responder (R) or Non-responder (NR) to antidepressant treatment in 4 weeks (early responder), which was characterized by a ≥50 % decrease in the HAM-D score. RESULTS: The following biological rhythms variables significantly predicted a better treatment response in a model controlling for age, sex, and previous treatments: higher levels of activity (M10 - average activity in the 10 most active hours within the 24 h-day) and an earlier center of the 10 most active hours (M10c), as well as lower intradaily variability (IV) of light exposure. Sleep parameters and 6-sulfatoxymelatonin levels did not associate with treatment response prediction. LIMITATION: Actimetry data were not assessed before changing in the treatment plan. CONCLUSION: Different patterns in activity and light exposure might be linked to early antidepressant response.


Assuntos
Transtorno Depressivo Maior , Adulto , Humanos , Feminino , Transtorno Depressivo Maior/tratamento farmacológico , Depressão , Ritmo Circadiano/fisiologia , Sono/fisiologia , Antidepressivos/uso terapêutico , Inquéritos e Questionários
6.
Methods Mol Biol ; 2550: 29-32, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180674

RESUMO

Melatonin synthesis by extrapineal sources adjusts physiological and pathophysiological processes in several types of cells and tissues. As measuring locally produced melatonin in fresh tissues might be a challenge due to limited material availability, we created a simple predictive model, the MEL-Index, which infers the content of tissue melatonin using gene expression data. The MEL-Index can be a powerful tool to study the role of melatonin in different contexts. Applying the MEL-Index method to RNA-seq datasets, we have shed light into the clinical relevance of melatonin as a modulator tumor progression and lung infection due to COVID-19. The MEL-Index combines the z-normalized expressions of ASMT (Acetylserotonin O-Methyltransferase), last enzyme of the biosynthetic pathway, and CYP1B1 (cytochrome P450 family enzyme), which encodes the enzyme that metabolizes melatonin in extrahepatic tissues. In this chapter, we describe the steps for calculating the MEL-Index.


Assuntos
COVID-19 , Melatonina , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , COVID-19/genética , Sistema Enzimático do Citocromo P-450/genética , Expressão Gênica , Humanos , Melatonina/metabolismo
7.
Neuroscience ; 499: 12-22, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798261

RESUMO

The pineal gland is a key player in surveillance and defense responses. In healthy conditions, nocturnal circulating melatonin (MEL) impairs the rolling and adhesion of leukocytes to the endothelial layer. Fungi, bacteria, and pro-inflammatory cytokines block nocturnal pineal MEL synthesis, facilitating leukocyte migration to injured areas. ATP is a cotransmitter of the noradrenergic signal and potentiates noradrenaline (NAd)-induced MEL synthesis via P2Y1 receptor (P2Y1R) activation. Otherwise, ATP low-affinity P2X7 receptor (P2X7R) activation impairs N-acetylserotonin (NAS) into MEL conversion in NAd incubated pineals. Here we mimicked a focal increase of ATP by injecting low (0.3 and 1.0 µg) and high (3.0 µg) ATP in the right lateral ventricle of adult rats. Nocturnal pineal activity mimicked the in culture data. Low ATP doses increased MEL output, while high ATP dose and the P2X7R agonist BzATP (15.0-50.0 ng) increased NAS pineal and blood content. In the brain, the response was structure-dependent. There was an increase in cortical and no change in cerebellar MEL. These effects were mediated by changes in the expression of coding genes to synthetic and metabolizing melatonergic enzymes. Thus, the pineal gland plays a role as a first-line structure to respond to the death of cells inside the brain by turning NAS into the darkness hormone.


Assuntos
Melatonina , Glândula Pineal , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Melatonina/farmacologia , NAD/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Glândula Pineal/metabolismo , Ratos , Receptores Purinérgicos P2X7/metabolismo , Serotonina/análogos & derivados
8.
Artigo em Inglês | MEDLINE | ID: mdl-35421537

RESUMO

Glucocorticoids and melatonin display immunomodulatory functions, with both immune-stimulatory and suppressor effects, depending on the context. While their immune properties are well-explored in mammals, there are still few studies on this immune-endocrine interaction in an inflammatory context in amphibians, all of them under captivity conditions, which can constitute a stressor for these animals. Evaluating how amphibians react to an immune challenge in the field would reveal relevant information regarding how immune-physiological parameters are modulated in natural conditions. This study aimed to investigate the effects of lipopolysaccharide (LPS) injection in male toads (Rhinella icterica) recently captured in their natural habitat in the Atlantic Forest at two different times of the day. We evaluated: splenic cytokines mRNA (interleukin [IL]-1ß, IL-6, IL-10, interferon-γ) and complement system protein (C1s), plasma bacterial killing ability (BKA), plasma corticosterone (CORT), melatonin (MEL), and testosterone (T) levels, and neutrophil to lymphocyte ratio (NLR), two hours post-injections. LPS-injection increased NLR, the gene expression of IL-1ß, and less evidently CORT levels independently of the time of the day. These results evidence LPS-induced inflammation, similarly observed in toads in captivity. Saline and LPS-injected toads showed a positive correlation between IL-1ß and IL-6, both cytokines with pro-inflammatory effects. Also, CORT was negatively associated with T, suggesting inhibition of the hypothalamus-pituitary-gonadal axis in the LPS-stimulated group. Our results are associated with the first stage of the inflammatory assemblage. Studies evaluating further steps of this process might lead to a better understanding of the immune-endocrine relations in amphibians.


Assuntos
Lipopolissacarídeos , Melatonina , Animais , Bufonidae/fisiologia , Corticosterona , Ecossistema , Interleucina-6 , Lipopolissacarídeos/toxicidade , Masculino , Mamíferos
9.
Chronobiol Int ; 39(1): 89-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503388

RESUMO

Increased plasma glucocorticoids (corticosterone - CORT, in amphibians) and melatonin (MEL) are associated with the daily activity phase and with environmental darkness, respectively. Besides, CORT and MEL also play pivotal immunomodulatory roles in several vertebrates. Herein we described the daily profile of plasma MEL and CORT for Rhinella icterica toads in captivity. Thereafter, we investigated the effects of lipopolysaccharide (LPS)-induced systemic inflammation on the production of CORT and MEL in the R. icterica. Captive toads showed CORT and MEL diurnal variation typical of nocturnal species, with increased values for CORT at ZT12 (18 h) and MEL peak at ZT18 (24 h). LPS-induced hormonal changes included increased plasma CORT and decreased ocular and plasma MEL when compared to those from toads treated with saline 2 h post-injection. Our results demonstrated the presence of a diurnal CORT and MEL variation in toads. We also showed the crosstalk between CORT and MEL during the toad's systemic inflammation in response to an immune challenge with LPS. Additionally, our results demonstrated that anuran eyes' MEL production might be regulated during the inflammatory processes.


Assuntos
Lipopolissacarídeos , Melatonina , Animais , Bufonidae , Ritmo Circadiano , Corticosterona , Lipopolissacarídeos/toxicidade , Melatonina/farmacologia
10.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830026

RESUMO

Melatonin is a highly conserved molecule found in prokaryotes and eukaryotes that acts as the darkness hormone, translating environmental lighting to the whole body, and as a moderator of innate and acquired defense, migration, and cell proliferation processes. This review evaluates the importance of pineal activity in monitoring PAMPs and DAMPs and in mounting an inflammatory response or innate immune response. Activation of the immune-pineal axis, which coordinates the pro-and anti-inflammatory phases of an innate immune response, is described. PAMPs and DAMPs promote the immediate suppression of melatonin production by the pineal gland, which allows leukocyte migration. Monocyte-derived macrophages, important phagocytes of microbes, and cellular debris produce melatonin locally and thereby initiate the anti-inflammatory phase of the acute inflammatory response. The role of locally produced melatonin in organs that directly contact the external environment, such as the skin and the gastrointestinal and respiratory tracts, is also discussed. In this context, as resident macrophages are self-renewing cells, we explore evidence indicating that, besides avoiding overreaction of the immune system, extra-pineal melatonin has a fundamental role in the homeostasis of organs and tissues.


Assuntos
Imunidade Inata , Macrófagos/imunologia , Melatonina/imunologia , Glândula Pineal/imunologia , Animais , Humanos , Inflamação/imunologia
11.
Front Psychiatry ; 12: 638981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897495

RESUMO

Daily rhythm of melatonin synchronizes the body to the light/dark environmental cycle. Several hypotheses have been raised to understand the intersections between melatonin and depression, in which changes in rest-activity and sleep patterns are prominent. This review describes key experimental and clinical evidence that link melatonin with the etiopathology and symptomatology of depressive states, its role in the follow up of therapeutic response to antidepressants, as well as the clinical evidence of melatonin as MDD treatment. Melatonin, as an internal temporal cue contributing to circadian organization and best studied in the context of circadian misalignment, is also implicated in neuroplasticity. The monoaminergic systems that underly MDD and melatonin production overlap. In addition, the urinary metabolite 6-sulfatoxymelatonin (aMT6) has been proposed as biomarker for antidepressant responders, by revealing whether the blockage of noradrenaline uptake has taken place within 24 h from the first antidepressant dose. Even though animal models show benefits from melatonin supplementation on depressive-like behavior, clinical evidence is inconsistent vis-à-vis prophylactic or therapeutic benefits of melatonin or melatonin agonists in depression. We argue that the study of melatonin in MDD or other psychiatric disorders must take into account the specificities of melatonin as an integrating molecule, inextricably linked to entrainment, metabolism, immunity, neurotransmission, and cell homeostasis.

12.
J Pineal Res ; 70(3): e12715, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33421193

RESUMO

Sleep disturbances, abnormal melatonin secretion, and increased inflammation are aspects of autism spectrum disorder (ASD) pathophysiology. The present study evaluated the daily urinary 6-sulfatoxymelatonin (aMT6s) excretion profile and the salivary levels of tumor necrosis factor (TNF) and interleukin-6 (IL-6) in 20 controls and 20 ASD participants, as well as correlating these measures with sleep disturbances. Although 60% of ASD participants showed a significant night-time rise in aMT6s excretion, this rise was significantly attenuated, compared to controls (P < .05). The remaining 40% of ASD individuals showed no significant increase in nocturnal aMT6s. ASD individuals showed higher nocturnal levels of saliva TNF, but not IL-6. Dysfunction in the initiation and maintenance of sleep, as indicated by the Sleep Disturbance Scale for Children, correlated with night-time aMT6s excretion (r = -.28, P < .05). Dysfunction in sleep breathing was inversely correlated with aMT6s (r = -.31, P < .05) and positively associated with TNF level (r = .42, P < .01). Overall such data indicate immune-pineal axis activation, with elevated TNF but not IL-6 levels associated with disrupted pineal melatonin release and sleep dysfunction in ASD. It is proposed that circadian dysregulation in ASD is intimately linked to heightened immune-inflammatory activity. Such two-way interactions of the immune-pineal axis may underpin many aspects of ASD pathophysiology, including sleep disturbances, as well as cognitive and behavioral alterations.


Assuntos
Transtorno Autístico/metabolismo , Ritmo Circadiano , Melatonina/análogos & derivados , Glândula Pineal/metabolismo , Transtornos do Sono do Ritmo Circadiano/metabolismo , Sono , Fator de Necrose Tumoral alfa/metabolismo , Adolescente , Transtorno Autístico/complicações , Transtorno Autístico/fisiopatologia , Biomarcadores/metabolismo , Biomarcadores/urina , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Interleucina-6/metabolismo , Masculino , Melatonina/metabolismo , Melatonina/urina , Glândula Pineal/fisiopatologia , Saliva/metabolismo , Transtornos do Sono do Ritmo Circadiano/etiologia , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Fatores de Tempo
13.
Gen Comp Endocrinol ; 303: 113702, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359060

RESUMO

Almost all physiological processes within the organism, including immune parameters and hormones, follow a circadian rhythm. These daily fluctuations are often observed in free-living organisms; however, little is known regarding hormonal and immune daily variations in anurans, particularly under laboratory conditions. This study aimed to investigate the hormonal and immune daily variation in captive-bred Bullfrogs (Lithobates catesbeianus) under constant conditions (21 °C and 12:12 LD cycle). Our results showed a daily variation for plasma corticosterone (CORT), testosterone (T), and melatonin (MEL), as well as for blood leukocyte profile, phagocytic activity, and plasma bacterial killing ability (BKA). Hormonal profile and immune activity were higher at the dark when compared with the light phase; however, monocytes and lymphocytes followed the opposite pattern. Moreover, CORT was positively correlated with phagocytosis percentage of blood cells, BKA, and monocytes, while MEL and T showed a positive correlation with PP. Our results demonstrate the daily covariation of different immune variables and immunomodulatory hormones. These 24 h-day variations and covariation certainly have broad implications and need to be considered for better understanding anuran physiology both in the context of laboratory and field studies.


Assuntos
Rana catesbeiana , Animais , Ritmo Circadiano , Corticosterona , Linfócitos , Masculino , Melatonina , Fagocitose
14.
Eur J Pharmacol ; 891: 173722, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33159932

RESUMO

Melatonin MT1 and MT2 receptors are expressed in the glomerular layer of the olfactory bulb (OB); however, the role of these receptors has not been evaluated until now. Considering the association of the OB with olfactory and depressive disorders in Parkinson's disease (PD), we sought to investigate the involvement of melatonin receptors in these non-motor disturbances in an intranigral 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. We demonstrate the presence of functional melatonin receptors in dopaminergic neurons of the glomerular layer. Local administration of melatonin (MLT, 1 µg/µl), luzindole (LUZ, 5 µg/µl) or the MT2-selective receptor drug 4-P-PDOT (5 µg/µl) reversed the depressive-like behavior elicited by 6-OHDA. Sequential administration of 4-P-PDOT and MLT (5 µg/µl, 1 µg/µl) promoted additive antidepressant-like effects. In the evaluation of olfactory discrimination, LUZ induced an olfactory impairment when associated with the nigral lesion-induced impairment. Thus, our results suggest that melatonin MT2 receptors expressed in the glomerular layer are involved in depressive-like behaviors and in olfactory function associated with PD.


Assuntos
Anosmia/metabolismo , Comportamento Animal , Transtorno Depressivo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Bulbo Olfatório/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptor MT2 de Melatonina/metabolismo , Animais , Anosmia/etiologia , Anosmia/fisiopatologia , Anosmia/psicologia , Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo/etiologia , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/psicologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Melatonina/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/fisiopatologia , Percepção Olfatória/efeitos dos fármacos , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/psicologia , Ratos Wistar , Receptor MT2 de Melatonina/efeitos dos fármacos , Transdução de Sinais , Olfato/efeitos dos fármacos , Natação , Tetra-Hidronaftalenos/farmacologia , Triptaminas/farmacologia
15.
Sci Rep ; 10(1): 4799, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179854

RESUMO

Daily oscillation of the immune system follows the central biological clock outputs control such as melatonin produced by the pineal gland. Despite the literature showing that melatonin is also synthesized by macrophages and T lymphocytes, no information is available regarding the temporal profile of the melatonergic system of immune cells and organs in steady-state. Here, the expression of the enzymes arylalkylamine-N-acetyltransferase (AA-NAT), its phosphorylated form (P-AA-NAT) and acetylserotonin-O-methyltransferase (ASMT) were evaluated in phagocytes and T cells of the bone marrow (BM) and spleen. We also determined how the melatonergic system of these cells is modulated by LPS and the cytokine IL-10. The expression of the melatonergic enzymes showed daily rhythms in BM and spleen cells. Melatonin rhythm in the BM, but not in the spleen, follows P-AA-NAT daily variation. In BM cells, LPS and IL10 induced an increase in melatonin levels associated with the increased expressions of P-AA-NAT and ASMT. In spleen cells, LPS induced an increase in the expression of P-AA-NAT but not of melatonin. Conversely, IL10 induced a significant increase in melatonin production associated with increased AA-NAT/P-AA-NAT expressions. In conclusion, BM and spleen cells present different profiles of circadian production of local melatonin and responses to immune signals.


Assuntos
Células da Medula Óssea/imunologia , Ritmo Circadiano/fisiologia , Interleucina-10/farmacologia , Lipopolissacarídeos/farmacologia , Melatonina/biossíntese , Baço/citologia , Baço/imunologia , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Animais , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Masculino , Fagócitos/imunologia , Fagócitos/metabolismo , Ratos Wistar , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
Sci Rep ; 10(1): 3269, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094439

RESUMO

Inflammatory joint conditions are characterized by synovial inflammation, which involves activation of fibroblast-like synoviocytes (FLSs) and production of inflammatory mediators and matrix metalloproteases (MMPs) in joints. This study showed that the snake venom metalloprotease (SVMP) BaP1 activates FLSs to produce PGE2 by a mechanism dependent on COX-2, mPGES-1 and iPLA2s. BaP1 also induces IL-1ß release, which up-regulates the production of PGE2 at a late stage of the stimulation. Expression of COX-2 and mPGES-1 are induced by BaP1 via activation of NF-κB pathway. While NF-κB p50 and p65 subunits are involved in up-regulation of COX-2 expression, only p65 is involved in BaP1-induced mPGES-1 expression. In addition, BaP1 up-regulates EP4 receptor expression. Engagement of this receptor by PGE2 triggers a positive feedback loop for its production by up-regulating expression of key components of the PGE2 biosynthetic cascade (COX-2, mPGES-1 and the EP4 receptor), thus contributing to amplification of BaP1-induced effects in FLSs. These data highlight the importance of FLS as a target for metalloproteases in joint inflammation and provide new insights into the roles of MMPs in inflammatory joint diseases. Moreover, our results may give insights into the importance of the catalytic domain, of MMPs for the inflammatory activity of these enzymes.


Assuntos
Dinoprostona/metabolismo , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , Metaloendopeptidases/farmacologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Animais , Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica , Inflamação , Masculino , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Doenças Reumáticas/metabolismo , Líquido Sinovial/citologia , Regulação para Cima
17.
J Pineal Res ; 68(3): e12636, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32043640

RESUMO

Environmental pollution in the form of particulate matter <2.5 µm (PM2.5 ) is a major risk factor for diseases such as lung cancer, chronic respiratory infections, and major cardiovascular diseases. Our goal was to show that PM2.5 eliciting a proinflammatory response activates the immune-pineal axis, reducing the pineal synthesis and increasing the extrapineal synthesis of melatonin. Herein, we report that the exposure of rats to polluted air for 6 hours reduced nocturnal plasma melatonin levels and increased lung melatonin levels. Melatonin synthesis in the lung reduced lipid peroxidation and increased PM2.5 engulfment and cell viability by activating high-affinity melatonin receptors. Diesel exhaust particles (DEPs) promoted the synthesis of melatonin in a cultured cell line (RAW 264.7 cells) and rat alveolar macrophages via the expression of the gene encoding for AANAT through a mechanism dependent on activation of the NFκB pathway. Expression of the genes encoding AANAT, MT1, and MT2 was negatively correlated with cellular necroptosis, as disclosed by analysis of Gene Expression Omnibus (GEO) microarray data from the human alveolar macrophages of nonsmoking subjects. The enrichment score for antioxidant genes obtained from lung gene expression data (GTEx) was significantly correlated with the levels of AANAT and MT1 but not the MT2 melatonin receptor. Collectively, these data provide a systemic and mechanistic rationale for coordination of the pineal and extrapineal synthesis of melatonin by a standard damage-associated stimulus, which activates the immune-pineal axis and provides a new framework for understanding the effects of air pollution on lung diseases.


Assuntos
Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Melatonina/metabolismo , Material Particulado/efeitos adversos , Glândula Pineal/metabolismo , Receptores de Melatonina/metabolismo , Poluição do Ar/efeitos adversos , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Humanos , Ratos
18.
Exp Hematol ; 78: 1-10, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31494174

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are essential for daily mature blood cell production, host immunity, and osteoclast-mediated bone turnover. The timing at which stem cells give rise to mature blood and immune cells while maintaining the bone marrow (BM) reservoir of undifferentiated HSPCs and how these opposite tasks are synchronized are poorly understood. Previous studies revealed that daily light onset activates norepinephrine (NE)-induced BM CXCL12 downregulation, followed by CXCR4+ HSPC release to the circulation. Recently, we reported that daily light onset induces transient elevations of BM NE and tumor necrosis factor (TNF), which metabolically program BM HSPC differentiation and recruitment to replenish the blood. In contrast, darkness onset induces lower elevations of BM NE and TNF, activating melatonin production, which metabolically reprograms HSPCs, increasing their short- and long-term repopulation potential, and BM maintenance. How the functions of BM-retained HSPCs are influenced by daily light and darkness cycles and their clinical potential are further discussed.


Assuntos
Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Ritmo Circadiano/fisiologia , Escuridão , Células-Tronco Hematopoéticas/metabolismo , Luz , Melatonina/metabolismo , Norepinefrina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células-Tronco Hematopoéticas/citologia , Humanos
19.
Front Immunol ; 10: 1496, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316525

RESUMO

The mechanisms by which obesity may alter immune responses to pathogens are poorly understood. The present study assessed whether the intrinsic responsiveness of resident macrophages to bacterial lipopolysaccharide (LPS) is reprogrammed in high-fat diet (HFD)-induced obesity. Macrophages from adipose tissue, lung alveoli, and the peritoneal cavity were extracted from obese rats on a HFD or from their lean counterparts, and subsequently studied in culture under identical conditions. CD45+/CD68+ cells (macrophages) were abundant in all cultures, and became the main producers of TNF-α upon LPS stimulation. But although all macrophage subpopulations responded to LPS with an M1-like profile of cytokine secretion, the TNF-α/IL-10 ratio was the lowest in adipose tissue macrophages, the highest in alveolar macrophages, and intermediary in peritoneal macrophages. What is more, diet exerted qualitatively distinct effects on the cytokine responses to LPS, with obesity switching adipose tissue macrophages to a more pro-inflammatory program and peritoneal macrophages to a less pro-inflammatory program, while not affecting alveolar macrophages. Such reprogramming was not associated with changes in the inflammasome-dependent secretion of IL-1ß. The study further shows that the effects of diet on TNF-α/IL-10 ratios were linked to distinct patterns of NF-κB accumulation in the nucleus: while RelA was the NF-κB subunit most impacted by obesity in adipose tissue macrophages, cRel was the subunit affected in peritoneal macrophages. It is concluded that obesity causes dissimilar, site-specific changes in the responsiveness of resident macrophages to bacterial LPS. Such plasticity opens new avenues of investigation into the mechanisms linking obesity to pathogen-induced immune responses.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Obesidade/imunologia , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Animais , Citocinas/imunologia , Masculino , NF-kappa B/imunologia , Cavidade Peritoneal/citologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/imunologia , Ratos Wistar
20.
J Pineal Res ; 67(3): e12599, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31356684

RESUMO

Melatonin production by pineal glands is modulated by several immune signals. The nuclear translocation of nuclear factor kappa-B (NFκB) homodimers, lacking transactivation domains, once induced by lipopolysaccharide (LPS) or tumor necrosis factor (TNF), inhibits the expression of Aanat gene and the synthesis of noradrenaline (NA)-induced melatonin. Interferon gamma (IFN-γ), on the other hand, increases melatonin synthesis. Furthermore, this cytokine activates the signal transducer as well as the activator of transcription 1 (STAT1) pathway, which was never evaluated as a melatonin synthesis modulator before. Reports demonstrated that IFN-γ might also activate NFκB. The present study evaluated the role of STAT1-NFκB crosstalk triggered by IFN-γ regarding the regulation of NA-induced pineal glands' hormonal production. Moreover, IFN-γ treatment increased NA-induced Aanat transcription, in addition to the synthesis of N-acetylserotonin (NAS) and melatonin. These effects were associated with STAT1 nuclear translocation, confirmed by the co-immunoprecipitation of STAT1 and Aanat promoter. Pharmacological STAT1 enhancement augmented NA-induced Aanat transcription as well as NAS and melatonin production. Additionally, IFN-γ induced the nuclear translocation of RelA-NFκB subunits. The blockade of this pathway prevented IFN-γ effects on the pineal function. The present data show that STAT1 and NFκB crosstalk controls melatonin production through a synergistic mechanism, disclosing a new integrative mechanism regarding pineal hormonal activity control.


Assuntos
Interferon gama/farmacologia , NF-kappa B/metabolismo , Norepinefrina/farmacologia , Glândula Pineal/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Imunoprecipitação da Cromatina , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Ensaio de Desvio de Mobilidade Eletroforética , Masculino , Técnicas de Cultura de Órgãos , Glândula Pineal/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA